
A D OR 081 N INTEGRA INCQA Wl H APL CA T CORDER 1/

CS IOAND IAL JN 84

INCISSIIM FU SATIS ICSM681 AFJR-T -40 1 RN 111

EEEm Emmh



11111"25 .4

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 963-A

I



AFOSR '-i

AN INTEGRAL INEQUALITY WITH APPLICATIONS
UTO ORDER STATISTICS

00
0by

L Philip J. Boland and Frank Proschan

FSU Statistics Report No. M681

AFOSR Technical Report 83-169

June, 1984

University College, Dublin
Department of Mathematics
Belfield, Dublin 4, Ireland

and

The Florida State University
Department of Statistics

Tallahassee, Florida 32306

AUG 3 01984

Key Words: Majorization, Convex and Concave functions, Order Statistics

Research sponsored by the Air Force Office of Scientific Research, Air
Force Systems Command, USAF, under Grant (or cooperative agreement)

= Number APOOW-K-0007. The U.S. Government is authorized to reproduce
C.) and distribute reprints for Governmental purposes notwithstanding any
t1. copyright notation thereon.

AMS Subject Classification: 62G30, 62N05

84 08 30 042



REPORT DOCUMENTATION PAGE

- -%.G ORGAN -AT 1% 4 P~t' %1.1rI t4 S) -i VUN TOR-NG '3RGjA'ZATGN RjPOR7 %jV6;R:S;

'SU Statistics Report- No. ::'C 81 .i

-3a %iAME OF PERFORM NG ORCANiZA7 Q'y 00 0;';CE- S.'20L 'a %AME Q;: M0t';T .%C 3RGANiZAr0ON

z'lorida State Tillverouity (if aopiscaoie)

61: ADD4Ess itoy. State, and ZIP Coo.) 7b. ADDIRESS :City, State, and ZIP Code)
Dept off Statist~c _'.':. CS~&:-f~':
Tallahassee T'L 32306 - D li3

Sa %AME 0; FUN:!N.GISPONSCRNG So~ OFICE SYMBOL 9 PROCUREMENT INSTRjMENT IDENTIFiCATION NUMBER
ORGANIZATION of applicable)

7 1 49620-82-K--0007
$k. ADDRES(City, State, and ZIP Coo.) 10 SOURCE OF FUNDING NUMB9ERS

PROGRAM PROJECT 'ASKC WORK( UNIT
i nfig At- D C --'0:3 1 ELEMENT NO. NO NO0 ACCESSION NO

11 T;TLE (include Secu'ry Cazsphcation)
AN INTEGRAL INEQUALITY WITWH APPLICA7I10N3 TDO ORDER0-- s:.'ns,11s

',2 PERSO%A. AUNwOR(S)
?hil--Ip J. Boland* and -7rankA Pr-oscha

3a TYPE OF REPORT ~ 3b TIME COVERED 1.4 DATE OF REPORT (Year. 4onth. D#y PAGE ON
T1echnical IFROM To E une 1984 WT t:

16. SUPPLEMENTARY NOTATION
*University College, Dublin, Dept o.xL :-athematlics, Belfield, Dublin 4, Ireland.

17. COSArl CODES 18. SUBiCT TERMS (Conti'nue on reverse if necessary ard identify by block number)
FrELO GROU~P SUB-GROUP : ajorization; CO'.--ex anj concave functions; ordvr statistics.

,9. ABSTRACT (Connue an relviere if necewaty and idmntify, by block number)

We say the life distribution function G niajorizes the life distribution

function F (written G I F) ifI0 4
I U(t)dt Z I 7(t)dt for all x a 0Ix x

and -(t) dt - Ft dt

0 DiSTPhiuTiON AvAILABL'T OF ABSTRAC- 21 ABSTRAC7 SECURITY ('OTJTTN1JiDN
~j3NCLASS1FIED,-NL!MTED [3 SAME AS RRPT CDr!C USE S7-

ZaAME OF RESPONSiBLE 1%OVIDUAL 221 TE:E MNE ICde Area Cooel .2C OFFICE SYMBOL
CPTA Brian 'J. Woodru±' C - r -

00DFORM 1473,84 VAR 93 APR edition mybe ued utl iluPaustod SECQ!* C ASS I'-CATION 09 '-4:S PACE
All otMr v rf-f

84 08 80 042 ..



.An integral inequality is proved giving sufficient conditions on functions

and -t in order to ensure that whenever Gi  Fi for i;1,..., n, then

Applications in reliability theory and order statistics are given.
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AN INTEGRAL INEQUALITY WITH APPLICATIONS
TO ORDER STATISTICS

by

Philip J. Boland and Frank Proschan

ABSTRACT

We say the life distribution function G majorizes the life distribution

function F (written G F) if

f G(t)dt f F(t)dt for all x 2t 0
x x

and JG(t)dt F t(t)dt <+

An integral inequality is proved giving sufficient conditions on functions

and 0 in order to ensure that whenever G. F. for i=1 n... , then
i n

Applications in reliability theory and order statistics are given.



1. Introduction.

For given life distribution functions F and G, the respective survival

functions are F = 1-F and G = l-G. We define the partial ordering T on the

m
class of life distributions with finite means by G > F (m for majorization) if

(1.1) (t)dt - f (t)dt for all x - 0
x x

and

(1.2) G= iG(t)dt = F(t)dt = F < + O

If X and Y are nonnegative random variables with respective distribution

functions F and G, then Ross [11] says "Y is more variable than X" (written

Y > X or G a- F)if (1.1) holds. Stoyan [14) equivalently defines Y to beV V

"larger in mean residual life" than X (written G _c F or in previous publi-

(2)
cations G > F) if (1.1) holds. Bessler and Veinott [3] use the terminology

"Y is stochastically larger in mean than X." The notation of Stoyan (c for

convex) is suggested by the following characterization:

< •F

Y (t)dGt) '(t)dF(t)

holds for all increasing (that is nondecreasing)
convex functions If, provided the integrals exist.

For life distribution functions F and G, G T F if and only if G >c F

(or G :v F)and G and F have equal finite means (liF UG). For distribution

functions with finite means, the following useful characterization of G T F

(see for example Ross [11] or Stoyan [14)) is an immediate corollary of

Theorem 2.1:

h(t) dG(t) Z V(t)dF(t)

holds for all convex functions IF, provided the integrals exist.
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We note in particular that if G F, then

U = t)dG(t) (t-U)2 dF(t) = 2

Hence G > F implies that the life distribution represented by G is 'more

dispersed' than that represented by F around their common mean.

For life distribution functions F and G with a common mean, G f F is

a more general relationship than G Z F (F is star shaped with respect to G).

When F and G are continuous life distributions (where F(O) = G(O) = 0, F and

G have interval support and G is strictly increasing on its support), then

G I F if G IF(x) is star-shaped (that is G-lF(x) is increasing for x > 0).
x

If G Z F and F and G have a common mean, then T(x) crosses G(x) once and from

above as x:O - -, so that in particular G T F (see Barlow and Proschan [2]).

For a continuous life distribution function F with mean u, let us define

G(x) = l-e-x /1 to be the exponential distribution with the same mean. Then

F is IFRA (increasing failure rate average) <'> G I F, and F is HNBUE (harmonic

new better than used in expectation) <=> G f F. See Klefsj6 [6] for further

properties of HNBUE distributions.

If F and G are two life distribution functions with common mean and

P(x) crosses l(x) once and from above as x:O . w, then G f F, however the

converse is clearly not true. For example let F and G be defined as follows:

(0 x <2 0 x<l1
F (x) =1/ 2 5 x < 4 GWx 1/ 1 5 x <: 3

1 4!5x r 35x 5

9 I

I I

I I0 x I

1 2 3 4 5

Then G F and G 'crosses' F three times.
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A vector b = (b1 ,...,b n ) majorizes the vector a = (a,,...,%) if

n n
Ibii 3  Ik a [i for k=2,...,n

i=k i=k

n n
and bi ] = ai,

i=1 i=l

where the b il's and a [i's are the components of b and a respectively in

m
ascending order. When b majorizes a we write b > a.

Suppose now that b and a are n dimensional vectors with nonnegative

m
components such that b > a. If G and F are respectively the distribution

functions for the uniform distributions on the components of b and a, then

m
G > F. This is our motivation for using the letter m for our partial

ordering on the family of life distribution functions with finite means.

2. An Integral Inequality.

The following theorem is a variant of an integral inequality obtained

by Fan and Lorentz [4].

Theorem 2.1. Let 0 = [0,1)n - [0,-) be a continuous increasing function,

and assume that for i=l,...,n, Fi and Gi are life distribution functions

m
where G. > F..1 1

a) If 0 is nonnegative decreasing, 0 is convex in each variable
separately and 0 satisfies the following property:

(2.1) *(uie+ h, u + k) - *(ui+ h, u.) - O(ui, u.+ k) + O(ui, u.) 
> 0

for all i 0 j, 0 : u. 5 u.+ h 5 1, 0 < u. 5 u.+ k 5 11 J J

(where we have used the notational simplification of omitting those arguments

of 0 which are the saw in a given formula),

then providing the integrals exist,

(2.2) CtCGt),-FCt))dt : W) C(F t),..., Fn(t))dt.

(2.2) ~ o'~
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b) If * is nonnegative increasing, 4 is concave in each variable
separately and 4 satisfies the following property:

(2.3) O(ui+ h, u.+ k) - (u.+ h, uj)-O(ui, u.+ k) + O(u, u.) < 0

for all isj, 0 < u. < u.+ h < 1, 0 < u. 5 u. k < 11 1 3 3

then providing the integrals exist

0 0

Proof: We prove only a), the proof of b) following in a similar fashion.

(i) Initially we show that it suffices to prove the result for the case

when F1, G1 .... Fn, Gn all have finite support. In turn to establish this

we show that if the inequality is valid whenever F1 and G1 have finite

support, then it is true in general.

Suppose now that Fit GI ... ,F n , Gn are arbitrary life distributions

m
where Gi > Fi for i = 1,...,n. Given c > 0, we can find S so that

/ *{lO(l~t ... ,(t))dt < c

S

Now define F ' and G1 by

= 1(t) t < S

0 t2S

G l(t) t < S S S
f F(t)dt - I G1(t)dt

s~tso 0G I(S) S < t < S +

G1(S)

0 otherwise,



mm
(if 0 (S) 0, then both G, and F, have finite support). Then Gl' > F and

0

f 41(t)$(Gt)t), aU (t))dt-
0

Since e is arbitrary, the conclusion follows.

(ii) It now remains to show that

7 *(t)$D(d 1 (t),.I. jdn(t) )dt I5 7(tM(fi(t),..J(t))dt
0 0

I!
whenever Gi > Fi for all i - 1..., n, and where the support of Fi and

Gi  [0,S] for all i = I,..., n.

Let E > 0 be given. As D is continuous, there exists a 6 > 0 such

that whenever u, v e [0,0 1 n and II u-vI = max lui -viI < 6, then

I-(u) - D(v)l < £/2S*(o)-

There exist only a finite number of points r in [0,S] where at least

one of Fl, G1,.. , G~ has a jump discontinuity with jump > 6/2. Hence

we can find an integer N large enough so that

(1) *(O)4rS sup 11 < N

and (2) on all but at most r of the N intervals L, ,

mn
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Hence for each i =1,.. .,n, we define the following simple survival

functions.

J (j.1)S/N F ()dt)/SIN
1 jS/N 1

and

11(t) f~(i~l) S/NG td)/ N
1 Jj S/N

when t E [4g. (j+l)S] for some j =0,... ,N-1, and zero otherwise.
Nm

Note that G. > F. for all i = 1,... ,n.

Moreover,

S S

0 0

N- j=O S/ J () [,N -L'(t'.... (t))dt -t.. 9  ()jdt

<*(O)2r sup 101' + * *-N (S

S S

10 0

Therefore, it suffices to prove (2.2) for the case when all FiG i are step

functions which are constant on [s' (jl)S) j = 0, ... , N-1. Furthermore,

without loss of generality we may assume that * is constant on each interval

of the form [LS., (il)s) for j = 0, ... , N-1.
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m
(iii) Assume now that G. > F. for i - 1,..., n and that all 2n functions have1 1

support in [0,S) and are constant on each interval [LS (,)S) for jO,... ,N-l.

We also assume * is constant on each of these intervals and use the notational

simplification ,(j) = for j=,... ,N-l.

Each G. may be transformed into F. by a finite succession of1 1

transformations T of the following type (see Hardy, Littlewood and Polya [51).

T changes the value v3. of Gi on the interval I N , N I into v..+ h and

o - vki- h v ki v v ji + h < 1.

Letting AT denote the change in the integral 7 ip(t)(G 1(t)..... n(t))dt0

resulting from such a transformation T, we complete the proof by showing

that A -> 0. Without loss of generality i=l, and hence

A S 40()[0(Vjl+ h, vj2 ....v Vj )  (Vv 2 ... VA)
AT  =Jl jn vl, vj2  jf

- q(k)[(O(vklvk2 .... Vkn) - 4O(vkl- h,vk2, ... vkn) ]l

*(k)N4(vjl+ h,v 2 , ... 'vn) - D(vjlVj2,.....)

-M((Vl + h,vk 2,... ,vkn) - O(vjl,vk2 ..... vkn))}

(since 0 is convex in each variable separately)
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P(k)NS{[+(v1 + h,vk2
+ + V hn) (vjlVk2+ h2,..Vkn

+ hn)

- D(v jl+ hvk2+ h2 .... vkn) + (v jlvk2 + h 2-1 ... Vkn)]

+ [O(Vl + h,vk2
+ h2,vk3 , .... Vkn) - VjlVk2 + h2,Vk3 .... , vkn)

- (v *+ h,vk2 ""' vkn + 'P(v j lvk2 vkn]l

S0

(since 0 satisfies property (2.1) and p is nonnegative).

Here h. = v.. - Vki for i = 2,...,n.

Corollary 2.2. Let G and F be life distribution functions with finite

m
means. Then G > F if and only if

a) For all nonnegative increasing continuous convex and nonnegative
decreasing i,

0 0

and

b) For all nonnegative increasing continuous concave D and nonnegative
increasing *,

f (t)-(G(t))dt f q(t)O(F(t))dt,
0 0

provided the integrals exist.

Proof. The only if part follows immediately from Theorem 2.1 . Assume

now a) and b) hold. Letting O(u)=uand* x(t) = X[x,+) (that is the

characteristic function of the interval Ex,+-)) it follows from b) that

f G(t)dt 2 7 T(t)dt for all x a 0. Taking *(t) I, it follows from a) that

x x

UF = PG'
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Corollary 2.3. If G and F are life distributions with finite means, then

<=F
m-

(2.5) f V(t)dG(t) 2 f V(t)dF(t)
0 0

holds for all convex functions ', provided the integrals exist.

m
Proof. The if part of the result is immediate. Now suppose G > F. It

suffices to prove (2.5) for the case where T has derivative * and (O)=O.

ThenGog
f '(t)dG(t) = C(t)G(t)dt

0 0

= [*,(t)-(O)JG(t)dt + (O)iG

f[C(t)-4(O)'F(t)dt + P(O)iiF (by Theorem 2.1)
0

= f 'V(t)dF(t).
0

Remark 2.4. Another approach to (2.5) in the proof of Corollary 2.3 is

m
as follows. Suppose G > F. Let ZG and ZF be the random variables with

xx x st
respective densities -!-f(t)dt and - IF(t)dt. Then ZG (

stochastically larger than ZF) and hence (see for example Ross [E11)

E((ZG)) a E(*(ZF)) for all increasing *. But

f *(t)G(t)dt = E(*(ZG)) (g(ZF)) = f *(t)f(t)dt.
0 0

3. Applications.

Theorem 3.1. Let Xl,...,XnY 1 1... ,Y be independent nonnegative random

variables where Xi. " Fi and Yi N Gi for i=l,...,n, and let X[ill... X [n]

and Y[1],...Y[n] be respectively the X (Y) observations in increasing order.
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m
Assume that G. > F. for i=l,... ,n. Then1 1

00 OD

a) fP[Y nh+...+Y k]>tdt Z f P[X~n+...+ X k]>tIdt
x x

for all x a 0 and k = 1,2,... ,n.

b) (EYE11 .... EYin ) I (EX[1 ] ..... EX~n)

Proof. b) follows immediately from a), In what follows c = (ci s ... ,en)

will denote any vector whose components are zeroes or ones. For i = 1,...,n, we

define *i:[O,1]n [ [0,+-) by

c En  I-c1  1- n
i= u1 . n (1-u1) .(1-u)

f, 1e+...+en Z n-i+l

We note that EX = J i(Fl(t), .. ,F (t))dt for i = 1,..., n. Now for
Ei] f i 1n

k f 1,... ,n we define

n

"k (Ul"-"Un) = i ki(Ul ' '' 'u n )

i=k

. .u 1  .. U (1-U1) ...(l-Un) n

£,£l+...+Cn > n-i+l

n i 1---c n

Imin(j,n-k+l) I U . ...Un (i-ul) ... (1-Un)
j=I n . 3

0 0
Since f PEX n.. ..+ X > t dt = k(Fl(t) .... f (t))dt,

En Ek) ki n

it suffices by Theorem 2.1 b to show that each *k satisfies (2.3) and

is concave increasing in each variable separately.

n-k E2 n i-2 l-n
Now ui. = 1 u2  ... un n(l-u2 ) ... (lun)

1u ok(Ul,.u n )  j=0 £1,2+..:+EnziJ

where El represents an n-1 component vector of zeroes and ones.
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As 4k(Ul, .... un) is symmetric in u .... ,u n , it follows that Ok is an

increasing function linear (and hence concave) in each variable separately.

For a continuously twice differentiable function 0 on [0,1] n , it is easy to

verify that the following conditions are equivalent (see Lorentz [7]):

(3.1) O(ui+ h, u + k) - $(ui+ h, u.) - O(ui.,u+ k) + $(ui, u.) - 0

for all i~j, 0 < u < u.+ h < 1, 0 < u. < u.+ k < 1.

(3.2) O(u.+ h, u.+ h) - O(u ii h, u.) - O(ui,uj+ h) + 4D(ui,u.) > 0

for all isj, 0 -< ui - u.+ h 1 1, 0 !5 u. - u.+ h < 1.:1 J

(3.3) Ou. u 2U .... RUn > 0
a a

for all i~j.

Therefore, due to the symmetry of k and the above equivalence, it suffices

to note that

3 n -E3  n

au 2  "'u) = U3 .. .un  (1-u3) ... (l-u)
I au 2 k I n 12,63+' .. +c =n-kn

1 ~ n

_< 0

(where t12 represents an n-2 component vector of zeroes and ones).

Remark 3.2. Let (Xl,... ,Xn) and (Yl, ...,Y) be random samples of size n from

populations with life distribution functions F and G respectively. Barlow and

Proschan [1 show that if G I F where G and F have common mean, then

C~~EYCl],...,EYn] ( EX[I],...,EX~n)

[n][n



- 12 -

Shaked [13] proves the same result under the more general assumption that

m
C > F. His proof uses the characterization of Corollary 2.3 together with

the fact that

k(tl, . tn) = tin]*...* t[k]

is (separately) convex for each k. It follows that

EY [n]+"' .+ EY = Yk(tl""..'tn)dG(tl)'".dG(tn)
0

-> f Tk(tl" ' ' ' t n ) dF ( t l ) ' ' '. d F ( t
n )

0n

=EX [n+...+ EX[k ] ,

Remark 3.3 Suppose that for each a e A, F(a) is distribution function

on R, and that y is a probability measure defined on a a-field of subsets

of A. One may define the n-variate distribution function(assuming appro-

priate measurability conditions on F (a)

F(x .... x) f F(a) (X .. F(a) (Xn)dy(a).
A

If random variables Xi,... ,Xn have such a joint distribution function,

they are said to be 'positively dependent by mixture'. Given X1 .... ,Xn

positively dependent by mixture, let Y' ... Yn be independent random

variables where Y. is distributed as X. for i = 1,... ,n. Shaked [12)1 1

(See also Marshall and Olkin [9] and Proschan [10]) has shown that in this

case

(EY[ 1 " .. EY[n]) > (EX[lJ..,EX[n3) "

Remark 3.4 Theorem 3.1 shows that if G. > F. for all i-l,...,n, then for1 1

n n
any k i Y[i is "more variable" than I X U3 (in the terminology of

i-k ink

Ross [11)) or that I Y [i]is "larger in mean residual life" thanI X i ]
i-k ink
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(in the terminology of Stoyan [14]). Since Yk(tl .... ,tn) = t[n] +...+ t[k ]

is convex, this also follows by using the result that if X1 ... Xn ,Y1,

...,Y are independent and Y. is "more variable" than X. for i=l,... ,n,
1 1

then Vk(Y1...,Yn) is "more variable" than Tk(X,...X) (see Ross [11]).

Remark 3.5 If X1 ... ,Xn are independent HNBUE random variables, then

Theorem 3.1 b could be useful in constructing bounds on the expected order

statistics EX[1 ] ....EXEl]'"' n]

Example 3.6 Let us consider the following problem of general interest.

n components are to be purchased in order to form a coherent system (for

example a k out of n system), and all of the components are to be purchased

from either company A or company B. Let us suppose that each company makes

the claim that components of type i have mean life pi (i=l,...,n), but

that company B is known to be 'more variable' than company A in the production

of any type of component. If we wish to maximize the mean life of the

system, from which company should we buy?

Let X1 .... Xn and YI.'" n be random variables representing the

lifetimes of the components from A and B respectively. If we can assume

that the components function independently within the system and that Y.

m
is more variable than Xi in the sense that Gi  F. (where X. ' \ F. and

Y. v Gi) for all i=l,...,n, then we know that

(EY[1],... EY[n]) > (EX[1],. EXIn]) "

In particular EY[, ] - EX[1 ] ' 0 and EY - EXIn ] a 0. Therefore if our

system is a series system we would buy from A, while if it is parallel we

would buy from B. This result was observed by Marshall and Proschan [8].
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For a more general k out of n system, we would be interested in the

expected order statistics EXEn-k+l) and EY n-k+l) in order to compare

companies A and B. Although

(EY[ill*.... EYIn] )  > (E-X[l...,EXn]'),

EY i]- EX[i]may theoretically at least undergo many sign changes as i:l - n

even in the case when F= F and Gi=G for all i=l,... ,n. However under the

assumption that G > F where G and F are continuous, G is strictly increasing

on its interval support and G(O)=F(O)=O, one may show that the number of sign

changes in EY i - EX i is no greater than the number of sign changes in

n-l F i-l(t) Fn i(t) is totally positive of

order - in i and t, this follows using the variation diminishing property

of totally positive functions and the identity

EY -EX = n(G-1 F(t) - t) i-(t)dt

(see Barlow and Proschan [11). In particular if crosses once then there

exists a constant C (depending on n, F and G) such that

EY - EX O for i < C

and

EY ij - EX[i ] Z 0 for i > C.
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